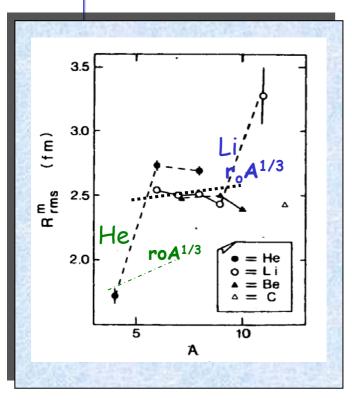
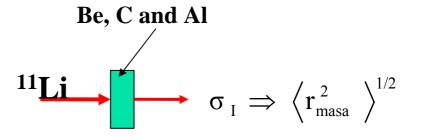


Dpto. de F. Nuclear y F. Estadística


Tabla de Núclidos



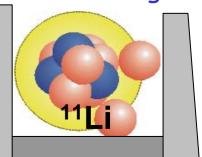
¿Qué ocurre en el límite de estabilidad neutrónico?

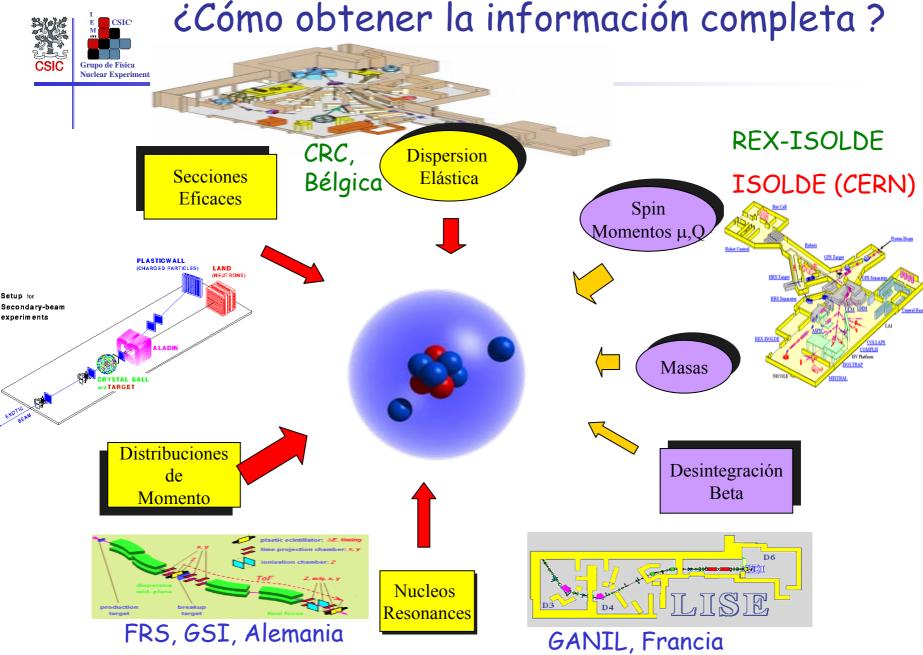
1985, Primeros Experimentos con haces radioactivos, Berkeley (USA)

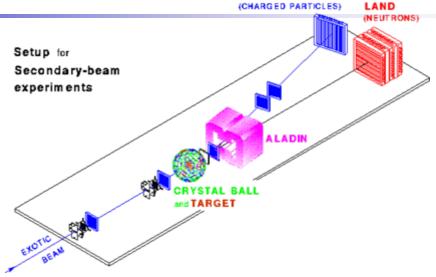
$$R(^{11}Li) = 3.30(24) \text{ fm}$$

¿Por qué su radio de masa es tan grande?

Tanihata


3





Experimentos @ GSI desde 1992

Caracterización de núcleos con halo en cinemática completa

Experimentos

<u>Variables</u>

Energía Haz

Blanco

Proyectil

30 → 1500 MeV/A

 $C \rightarrow Pb$

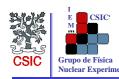
 $^6\text{He} \rightarrow ^{19}\text{C}$

Distribución de momentos de


<u>Observables</u>

neutrones

- Momento de los fragmentos
- Invariante de masa
- Correlaciones angulares
- → Distribucion de momento del halo neutrónico
- → Obtención de función de ondas (componentes s y p)
- → Distribución espacial de los neutrones en el halo


Resultados

Hitos

- ❖ Estructura del halo de 2n observado ¹¹Li. Medidas en cinemática completa.
- Dinamica de tres cuerpos: core+n+n
- ❖ Identificación de otros núcleos con halo: ⁶He, ¹⁴Be
- Composición de función de onda, confirmación de presencia de onda-s
- ❖ Caracterización de núcleos de 1n en el halo como ¹¹Be y ¹9C
- ❖ Identificación de la estructura de ⁸He como piel neutrónica.

Publicaciones: 40/Citas: 1300

Propiedades de la desintegración de núcleos exoticos

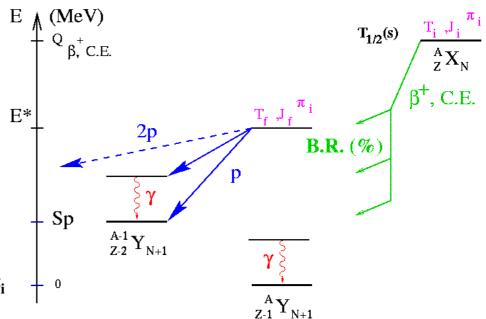
41963

Propiedades Globales

41916 Rutherford & Wood βα [*Philos. Mag.* **31** (1916) 379]

Barton & Bell identified ²⁵Si as βp

- Short half-lives (~10ms)
- Valores Q_{β} altos \bullet Valores $S_{p/n}$ bajos
 - β-emisión de partículas

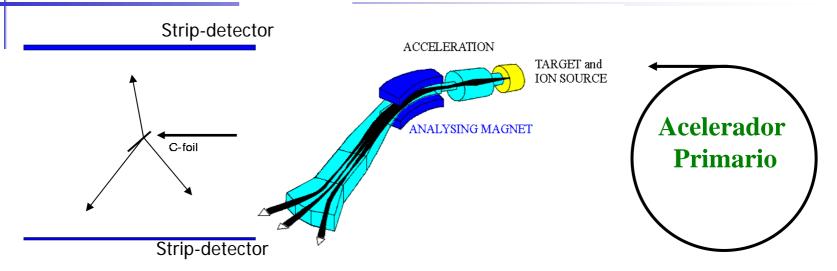

> SONDA MUY SELECTIVA

Selection rules:

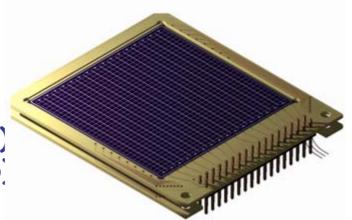
 $\Delta T=0$; $\Delta J=0$; $\pi_f = \pi_i$ • Fermi: **Gamow-Teller:** Δ **T**=0±1; Δ **J**=0±1; π _f = π _i

Probabilidad de transición reducida

ft = f *
$$\frac{T_{1/2}}{B.R.}$$
 = $\frac{K}{G_V^2 |\tau|^2 + G_A^2 |\sigma\tau|^2}$ = $\frac{C}{B(F) + B(GT)}$

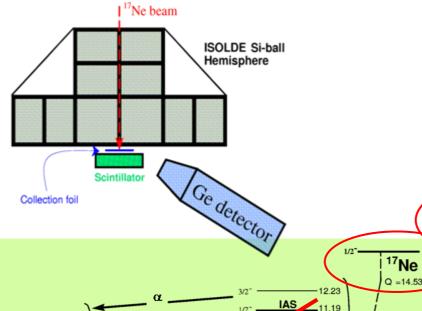

Ε, Γ Densidad de niveles Spin, Isospin β-Prop. Desintegración

14 de marzo de 2007 M.J.G. Borge



Técnica Experimental para la detección de multiparticulas

- · Método ISOL
- · Población del nivel por desintegración β
 - Metodo limpio y selectivo
- · Uso de DSSSDs, cinematica completa
 - Gran cobertura angular (pocos sucesos)
 - Alta segmentación (evita apilonamiento)
 - Lectura efectiva de datos



¹³N

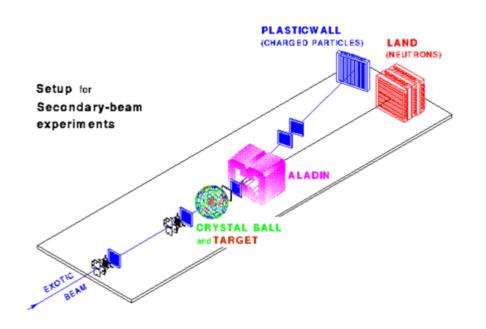
¹⁷Ne Emisión retardada de partículas cargadas @ ISOLDE

⇒ Información sobre estados de
 ¹6O y su efecto en el proceso

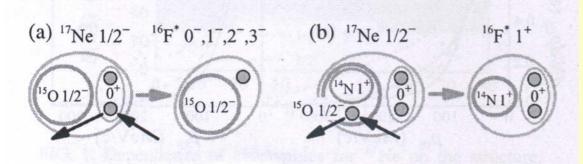
 $^{12}C(\alpha,\gamma)^{16}O$

- ✓ 6917 keV y 7117 keV
- ✓ anchura de niveles

Experimento


- \triangleright detección de α y protones
- discriminación de betas
- \triangleright Idealmente: $\beta + p + \alpha + {}^{12}C$

¹⁶O


3.104

Estudio del halo de 2p de ¹⁷Ne @ GSI

Grigorenko, Parfenova & Zhukov, Phys. Rev. C 71(2005) 051604(R)

Existencia de un halo de 2p \$\iff Mezcla conf s/p.\$

Discrepancia en σ -2p (30-40%) \Rightarrow Dos alternativas:

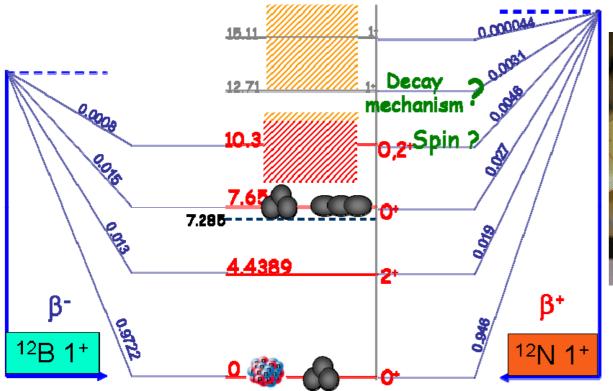
- 1. Proton del core ¹⁵0
- 2. Proton del halo

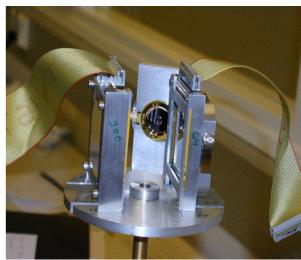
Medida del invariante de masa resuleve el problema

Medida de ¹⁵O+p (¹⁶F):

- Proton Knock-out del halo
- ☐ Proton knockout del core

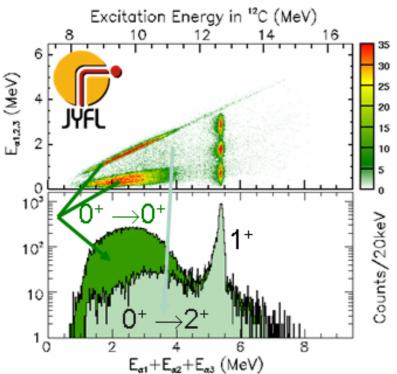
14 de marzo de 2007 M.J.G. Borge


Resonancias en 12 C y su influencia en el ritmo de fusion de 3α

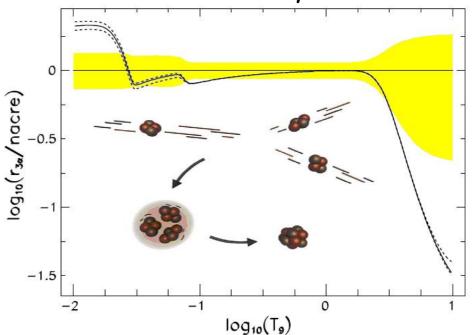

Toma de datos en ISOLDE (CERN) + Jyväskylä (Finlancia) + KVI (Holanda)

Objetivo: Mecanismo de emisión

Revision del ritmo de fusión de 3α


Interes astrofisico. Abundancia de 12C y 160 at final del proceso de quemado de He

Resultados del estudio de las resonancias de 12C


Nucleosintesis:

 \checkmark T < 10⁸K $\Rightarrow \frac{1}{2}$ tiempo para alcanzar la cantidad de ¹²C necesaria para iniciar el ciclo de CNO en estrellas primordiales.

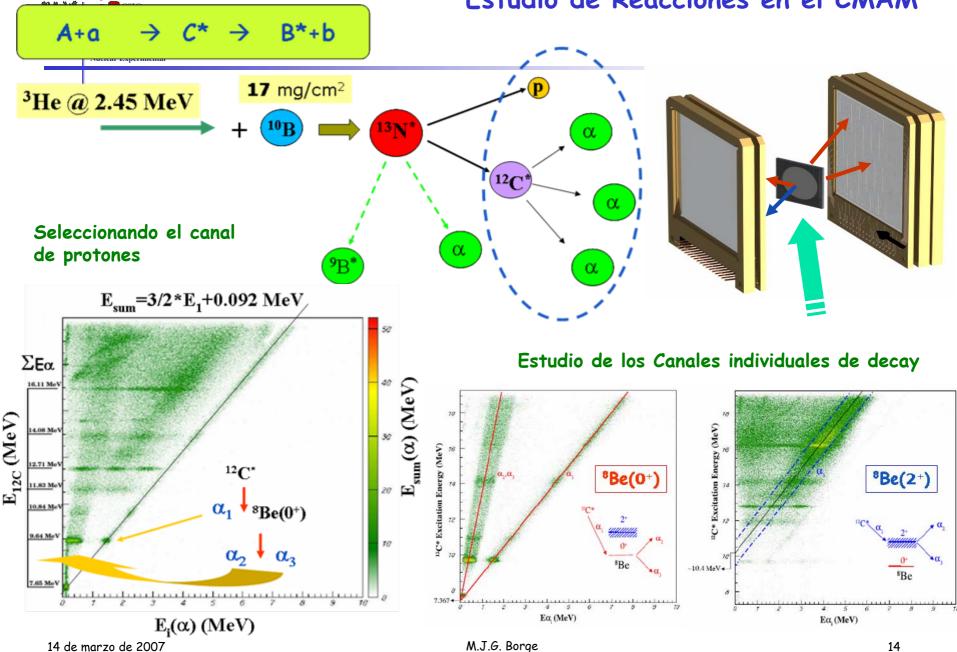
√T>3×10⁹ ⇒ reducción (factor 2-3) en producción ⁵⁶Ni y elementos más pesados en supernoves ricas en neutrones.

Información de Estructura Nuclear

- \checkmark ruptura del nivel 1⁺ @12.7 MeV \Rightarrow secuential .
- ✓ Energía anchura y $J^{\pi} = 0^{+}$ para estado a 10 MeV.
- ✓ canales de desexcitación del nivel 10 MeV a traves de 0⁺ y 2⁺ en ⁸Be.


Mecanismo de emisión de multipartículas

<u>β-delayed particle emission - ISOLDE</u>


$$^{9}C \rightarrow ^{9}B^{*} \rightarrow p + \alpha + \alpha$$
 CERN-IS361
 $^{9}Li \rightarrow ^{9}Be^{*} \rightarrow n + \alpha + \alpha$ (ISOLDE)
 $^{12}N \rightarrow ^{12}C^{*} \rightarrow \alpha + \alpha + \alpha$ Jyväskylä
 $^{12}B \rightarrow ^{12}C^{*} \rightarrow \alpha + \alpha + \alpha$ CERN-IS404
 ^{11}Li IS417

Reaction studies - CMAM tandem

3
He + 6 Li \rightarrow 9 B* \rightarrow α + α + p
d + 7 Li \rightarrow 9 Be* \rightarrow α + α + n
p + 11 B \rightarrow 12 C* \rightarrow α + α + α
 3 He + 9 Be \rightarrow 12 C* \rightarrow α + α + α

Estudio de Reacciones en el CMAM

Proyectos en Curso

Estudios de desintegración beta / haces de energía baja

ISOLDE and JYFL: Mecanismo de emisión de multipartículas: 8B, 35Ca

- >Estudio de Reacciones:
 - Estudio de reacciones directas de interés astrofísico CMAM (UAM, Madrid), Tandetron 5MV
 - > Energias próximas a la barrera Coulombiana:
 - propiedades de núcleos con halo
 - ✓ **REX-ISOLDE**: Estudio de los núcleos resonantes ⁷He & ¹⁰Li

Presencia de dipolarizabilidad electrica en núcleos con halo:

- ⁶He (Louvain-la-Neuve) & ¹¹Li (TRIUMF) & ¹¹Be (REX-ISOLDE)
 - >Haces relativistivas: Identificación y propiedades de núcleos con halo

GSI (FRS, LAND) / GANIL

Developments for calorimeter of R3B@FAIR

- Calorimeter for proton & gamma detection → Phoswich
- > Electronic readout

14 de marzo de 2007 M.J.G. Borge 16

FAIR: Facility for Antiproton and Ion Research

España es miembro de FAIR desde 7 nov 2007

FAIR

NESR

Haces de iones estables y exóticos y de antiprotones con energías hasta 30 GeV/u Intensidad 1000 superior SIS100, SIS300:

Iones estables con Z=1-92 y energías hasta 30 A GeV

SFRS:

Producción y separación de núcleos exóticos

CR:

Almacenamiento y medidas de precisión con núcleos exóticos

RESR:

Almacenamiento de anti-p y
Deceleración de núcleos exóticos

NESR:

colisiones e⁻-núcleo exótico colisiones anti(p)-núcleo exótico deceleración de anti(p) y nu. exót.

HESR: colisiones anti(p)-p

CSIC Grupo de Física Nuclear Experimental

Física en FAIR

galaxia $10^{21} \, \text{m}$ Fuerza Gravitacional materia 10⁻¹ m ADN 10⁻⁸ m Fuerza Electromagnética Fuerza Electrodébil cristal átomo 10⁻⁹ m Fuerza Débil 10⁻¹⁰ m Modelo Estándard núcleo atómico 10⁻¹⁴ m QCD nucleón $<10^{-18} \text{ m}$ Fuerza Fuerte 10⁻¹⁵ m electrón quark Plasma quark-gluón

Excitación del vacío

La investigación con haces de iones y antiprotones

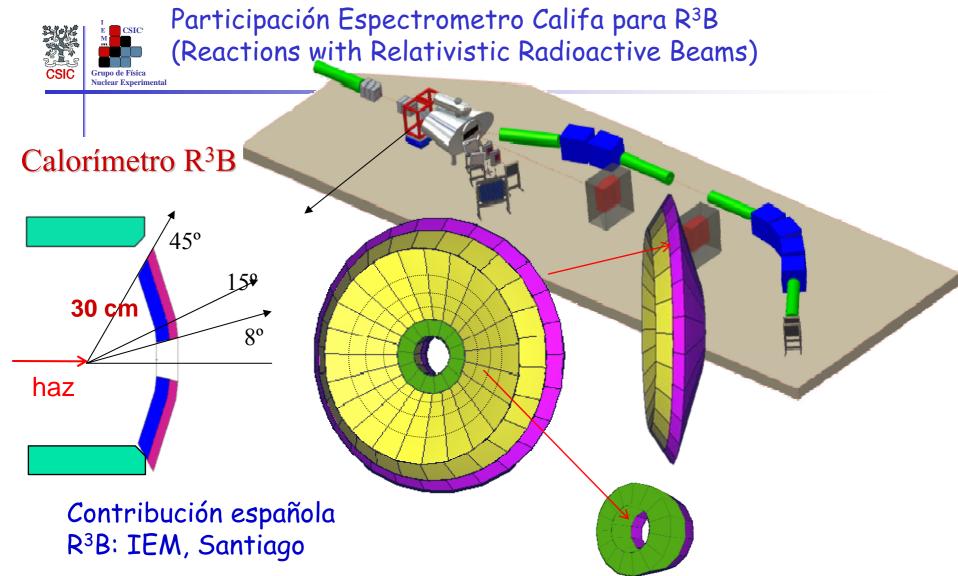
Interacciones ión-materia

Plasmas densos

Iones pesados → 12 TW/g

Campos EM intensos

Nucleos al extremo


Núcleos exóticos (1 GeV/u)

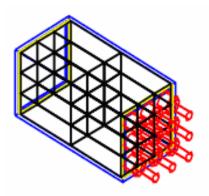
Estructura de quarks y gluones de los hadrones

Antiprotones 0-15(30) GeV

Materia de quarks

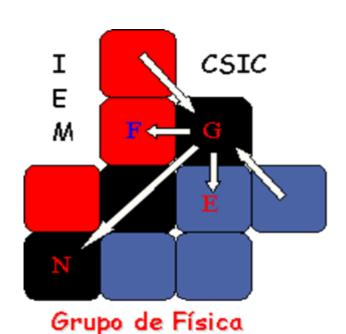
Iones relativistas (35 GeV/u)

Propuesta del IEM para ángulos 15 – 45° y 8 – 15°: Phoswich


Calorímetro= cristales centelleadores $E\gamma \approx 0.5\text{--}5 \text{ MeV} \Rightarrow \text{(corrimiento Doppler "x 3")} \Leftrightarrow 1\text{--}15 \text{ MeV}$

Contribución a FAIR

Espectrómetro CALIFA (CALorimeter for In-Flight gamma detection) rodea al blanco de R³B tiene como objetivo la detección de protones y gammas de alta energía, con énfasis en su resolución energética, y su capacidad de identificación individual.


- Simulaciones en GEANT4 indican que para caracterizar protones de alta energía es mejor usar un detector compuesto phoswich (dos cristales centelladores de distinta composición).
- ❖ Se han comparado los programas de simulación GEANT4 con MCNP (Monte Carlo n-Particles) demostrando que dan la misma respuesta para la radiación gamma en todo el rango de energía.
- I+D en eletrónica Digital

Grupo de Física Nuclear Experimental

http://www.iem.csic.es/nucexp

Nuclear Experimental

Investigadores Pantilla:

M^a José G^a Borge Olof Tengblad Andrea Jungclaus (junio 2008)

·Doctores:

Daniel Galaviz Arantxa Maira Manoli Turrión

·Doctorandos:

Martín Alcorta Ricardo Dominguez Miguel Madurga Mario Cubero

Técnico:

Angel Perea