SIMULACIÓN Y EXPERIMENTOS EN FÍSICA MACROMOLECULAR

Javier Martínez de Salazar

Grupo de Biofísica Macromolecular(BIOPHYM) Departamento de Fisica Macromolecular Instituto de Estructura de la Materia – CSIC http://www.biophym.iem.csic.es/

BREVE HISTORIA DEL GRUPO BIOPHYM

ESTRUCTURA DE MEMBRANAS CELULARES-DISTORSIONES POR PROTEÍNAS

1976-1994

morphology/structure vs. Physical properties (solid)

1996-2004

- molecular architecture vs. physical properties melt
- **Computational chemistry** (MM and QM, DFT)

2004 - 2008

Macromolecular simulation (MC, MD): crystallization + melt

2008 - 2018

Macromolecular/ BIO

Las macromoléculas adoptan conformaciones extremas

FORMAN UNA RED COOPERATIVA CON EFECTOS NO LINEALES UNO AFECTA A TODOS

Las macromoléculas forman un sistema (red de entrecruzamientos) en la que cada elemento (molécula) repta en un tubo cuyo contorno queda fijado por el resto

Se manifiestan fenómenos cooperativos (sistemas altamente correlacionados)

EL SISTEMA ES MÁS QUE LA SUMA DE SUS ELEMENTOS (ESTRUCTURAS COMPLEJAS)

¿POR QUÉ HACER SIMULACIÓN COMPUTACIONAL?

 TRATAMOS CON SISTEMAS MULTICOMPONENTES EN EL QUE SUS ELEMENTOS SE ORGANIZAN ESTRUCTURALMENTE DANDO LUGAR A FENÓMENOS NO PREDECIBLES POR LAS TEORIAS EXISTENTES

× LIMITACIONES EN LA OBTENCIÓN DE SEÑALES EXPERIMENTALES

MUCHAS PREGUNTAS BÁSICAS SIN RESPUESTA

¿Cómo solidifican los polímeros? teorías actuales no explican muchos resultados experimentales

¿PARADIGMA INVÁLIDO?

¿Como se forman las fases en el fundido? la termodinámica no da respuestas concluyentes

APROXIMACIÓN SISTÉMICA A LOS PROCESOS DE ENSAMBLAJE Y SEÑALIZACIÓN EN MACROMOLÉCULAS.

Alimentación

ESTABLECIENDO SINERGIAS ENTRE EXPERIMENTOS Y SIMULACIÓN

El concepto de multiescala

Investigar y diseñar nuevos materiales desde la síntesis a su aplicación.

Escala temporal

SIMULACIÓN Y EXPERIMENTOS EN FÍSICA MACROMOLECULAR.

Modelización de las reacciones de polimerización mediante catalizadores organometálicos.

MeO

Copolimeros de etileno y metacrilato. Biocompatibilidad

J. Ramos, S. Martínez, V.L. Cruz and J. Martínez-Salazar, J. Molecuar Mod. (**2011**) J. Ramos, V. L. Cruz, J. Martínez-Salazar, M. Brasse, P. Palma and J. Campora J Pol Sci: Pol Chem (**2010**)

Comportamiento viscoelástico y dinámica molecular de polímeros sintéticos

Procesabilidad Viscoelasticidad

J.F. Vega, J.Ramos and J. Martínez-Salazar, Rheologica Acta (**2011**) J. Ramos, J.F. Vega, D.N. Theodorou and J. Martínez-Salazar, Macromolecules (**2008**)

Cristalización de polímeros en disolución. Efecto de la arquitectura molecular

Teorías de Propiedades cristalización mecánicas

S. Sanmartín, J. Ramos and J. Martínez-Salazar Macromolecular Symposia (2011) J. Ramos and J. Martínez-Salazar J Pol Sci: Pol Phys (2011)

EXPERIMENTAL MORFOLOGIA MONOCRISTALES

Тс

PE10

86°C

Plegamiento de una macromolécula

SIMULACION Y EXPERIMENTOS EN MONOCRISTALES

SIMULACIÓN Y EXPERIMENTOS EN FÍSICA MACROMOLECULAR. PROTEINAS

PROPIEDADES HIDRODINÁMICAS DEL COMPLEJO HER2/TZM

SIMULACIÓN Y EXPERIMENTOS EN FÍSICA MACROMOLECULAR. PROTEINAS

HER2

HER2 / TZM

 HER2 pertenece a una familia de receptores que son potentes mediadores en el crecimiento y desarrollo celular

> Nature Review 9 (2009) 463-475 Advances In Protein Chemistry 68 (2004) 1-27

Receptor	Enfermedad	Estrategias
HER2 Se sobre- expresa	Cáncer de mama Cáncer gastrico Cáncer de ovario Cáncer pulmonar	Inhibidores tirosina- kinasa, proteínas de choque térmico, inhibidores de dimerización y conjugación entre anticuerpos-quimioterapia.
	Tratamiento actual	Anticuerpos monoclonales especificos

MECANISMOS DE TRANSFERENCIA:

Dimerización

Biochimica et Biophysica Acta 178 (2008) 12-13 Advances in Protein Chemistry 68 (2004) 1-17 Structure 15 (2007) 942-954

Interacción anticuerpo ErbB

Transmission Electron Microscopy

Image

Reconstruction

HER2/TZM (C2)

Dynamic Light Scattering Diffusion Coefficient

Stokes-Einstein relation

- D = Diffusion coefficient
- k = Boltzmann's coefficient
- T = Temperature
- η = Viscosity
- R = hydrodynamic radius

 $D = \frac{kT}{6\pi\eta R}$

HER2/TZM

Diffusion Coefficient and Size

TZM (monodisperse)

 D_t (Buffer @20 °C) = 4.01 10⁻⁷ cm²/s D_t (Water @20 °C) = 4.09 10⁻⁷ cm²/s

> r_h (Stokes-Einstein)=5.23 nm r_h (TDA-SEC)=5.16 nm

Diffusion Coefficient and Size Complexes

Study of the interaction in extracellular domain ErbB2-Transtuzumab complexes by hydrodynamic properties and computational models

Generating atomistic structures from MD simulations

Study of the interaction in extracellular domain ErbB2-Transtuzumab complexes by hydrodynamic properties and computational models

Study of the interaction in extracellular domain HER2-Transtuzumab complexes by hydrodynamic properties and computational models

Table 3. Comparison of experimental and calculated hydrodynamic results for the structures studied, including the TZM as model case, at T = 293 K

[η] (cm ³ ·g ⁻¹)	[η] (cm ³ ·g ⁻¹)	D×10 ⁷ (cm ² -s ⁻¹) ^a	D×10 ⁷ (cm ² -s ⁻¹) ^a
SEC	SIM	DLS	SIM
6.5 ± 0.1	$\textbf{6.6} \pm \textbf{0.2}$	4.09 ± 0.02 (5.2 nm)	3.95 ± 0.03 (5.3 nm)
n.d.	5.7 ± 0.2	n.d.	5.32 ± 0.04 (4.0 nm)
6.4 ± 0.2	6.5 ± 0.2	4.56 ± 0.02 (4.7 nm)	4.77 ± 0.04 (4.5 nm)
6.9 ± 0.5^{a}	6.9 ± 0.2	3.57 ± 0.02 (6.0 nm)	3.71±0.02 (5.8 nm)
7.4 ± 0.2	7.9 ± 0.2	3.16±0.02 (6.8 nm)	3.20 ± 0.02 (6.7 nm)
8.6±0.2	$\textbf{8.4} \pm \textbf{0.2}$	2.38± 0.02 (9.0 nm)	2.80 ± 0.02 (7.6 nm)
	$[\eta] (cm^{3} \cdot g^{-1})$ SEC 6.5 ± 0.1 n.d. 6.4 ± 0.2 6.9 ± 0.5 ^a 7.4± 0.2 8.6± 0.2	$[\eta]$ (cm ³ ·g ⁻¹) $[\eta]$ (cm ³ ·g ⁻¹)SECSIM 6.5 ± 0.1 6.6 ± 0.2 n.d. 5.7 ± 0.2 6.4 ± 0.2 6.5 ± 0.2 6.9 ± 0.5^a 6.9 ± 0.2 7.4 ± 0.2 7.9 ± 0.2 8.6 ± 0.2 8.4 ± 0.2	$[\eta]$ (cm ³ ·g ⁻¹) $[\eta]$ (cm ³ ·g ⁻¹) $D \times 10^7$ (cm ² ·s ⁻¹) ^a SECSIMDLS 6.5 ± 0.1 6.6 ± 0.2 4.09 ± 0.02 (5.2 nm)n.d. 5.7 ± 0.2 n.d. 6.4 ± 0.2 6.5 ± 0.2 4.56 ± 0.02 (4.7 nm) 6.9 ± 0.5^a 6.9 ± 0.2 3.57 ± 0.02 (6.0 nm) 7.4 ± 0.2 7.9 ± 0.2 3.16 ± 0.02 (6.8 nm) 8.6 ± 0.2 8.4 ± 0.2 2.38 ± 0.02 (9.0 nm)

^a In parentheses the corresponding value of \underline{r}_{h} obtained from Eq. 6 in water at T = 293 K.

Home

People

Publications -Research

Thesis Projects Workshops Service TEM

Group members (left to right): Top: Mr. Rubén Casas, Mr. Alejandro Clemente, Mr. Guillermo Juárez. Middle: Dr. Javier Ramos, Dr. Victor Cruz, Dra. Virginia Souza-Egipsy, Mr. Eduardo Sanchez, Mrs. Anna Espasa, Dr. Juan Francisco Vega. Bottom: Mr. Alexis Julián Amagua, Prof. Javier Martínez-Salazar, Dra. Sonia Martínez.

BIOPHYM is a group devoted to experimental and computational research activities related to the fundamental physical properties of macromolecular systems: molecular dynamics, assembling and functionality of synthetic polymers and biomacromolecular systems.

BIOPHYM is particularly concerned on maintaining a constant link with the industrial sector. The formation of doctoral students is also an important task for this group.

THE END

MUCHAS GRACIAS POR VUESTRA ATENCIÓN OS ESPERAMOS ESTA TARDE