Hielos astrofísicos

Belén Maté

Departamento de Física Molecular IEM-CSIC

belen.mate@csic.es

¿A qué llamamos hielo?

Hielo: Agua en estado sólido

Definición Científica

Hielo: se dice de una fase sólida de una sustancia que se presenta en estado líquido o gas a temperatura ambiente.

Por ejemplo: metanol (CH_3OH), dióxido de carbono (CO_2), metano (CH_4), nitrógeno (N_2)...

Hielo en objetos astrofísicos

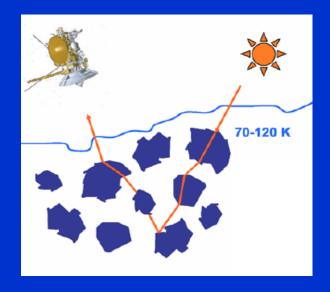
Predomina el hielo de agua, con pequeñas cantidades de moleculas sencillas congeladas (NH₃, CO₂, CO, N₂ and CH₄).

Planetas y Satélites del Sistema Solar

Núcleos cometarios

Nubes densas del medio interestelar

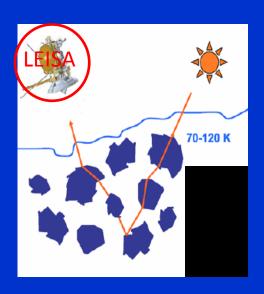
Plutón: Objeto del cinturón de Kuiper


Distancia al Sol : 39,264 UA (5,9 ×109 km)

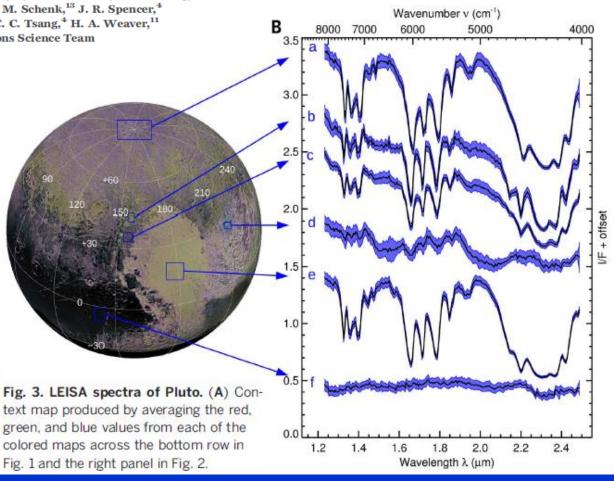
Misión New Horizont de la NASA.

Lanzamiento: Jan 19, 2006. Máximo acercamiento: 14 Julio 2015.

Imagen tomada 14 de julio de 2015. La nave estaba a 450,000 km. LOng Range Reconnaissance Imager (LORRI): visible (350-850 nm) (NASA/JHUAPL/SwRI).



La luz solar que recibe Plutón es 1000 veces mas tenue que en la Tierra


PLANETARY SCIENCE

Surface compositions across Pluto and Charon

W. M. Grundy, ^{1*} R. P. Binzel, ² B. J. Buratti, ³ J. C. Cook, ⁴ D. P. Cruikshank, ⁵ C. M. Dalle Ore, ^{5,6} A. M. Earle, ² K. Ennico, ⁵ C. J. A. Howett, ⁴ A. W. Lunsford, ⁷ C. B. Olkin, ⁴ A. H. Parker, ⁴ S. Philippe, ⁸ S. Protopapa, ⁹ E. Quirico, ⁸ D. C. Reuter, ⁷ B. Schmitt, ⁸ K. N. Singer, ⁴ A. J. Verbiscer, ¹⁰ R. A. Beyer, ^{5,6} M. W. Buie, ⁴ A. F. Cheng, ¹¹ D. E. Jennings, ⁷ I. R. Linscott, ¹² J. Wm. Parker, ⁴ P. M. Schenk, ¹³ J. R. Spencer, ⁴ J. A. Stansberry, ¹⁴ S. A. Stern, ⁴ H. B. Throop, ¹⁵ C. C. C. Tsang, ⁴ H. A. Weaver, ¹¹ G. E. Weigle II, ¹⁶ L. A. Young, ⁴ and the New Horizons Science Team

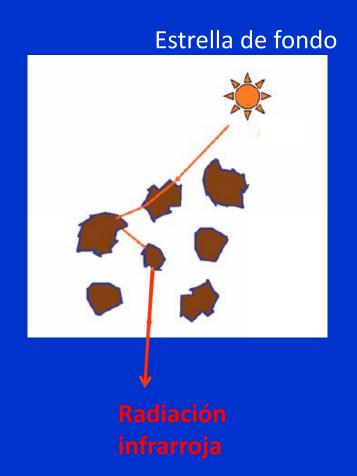
LEISA: 1 - 3 μm Infrarrojo cercano

Nubes moleculares del medio interestelar Gran riqueza química. Mas de 200 moléculas observadas

Densidad "alta" (10⁴- 10⁶ cm⁻³) y temperatura baja (10-50 K)

Los granos de polvo (silicatos, carbonáceos) se recubren de capas de "hielos" (volátiles)

Nota: 10¹⁹ cm⁻³ en superficie terrestre



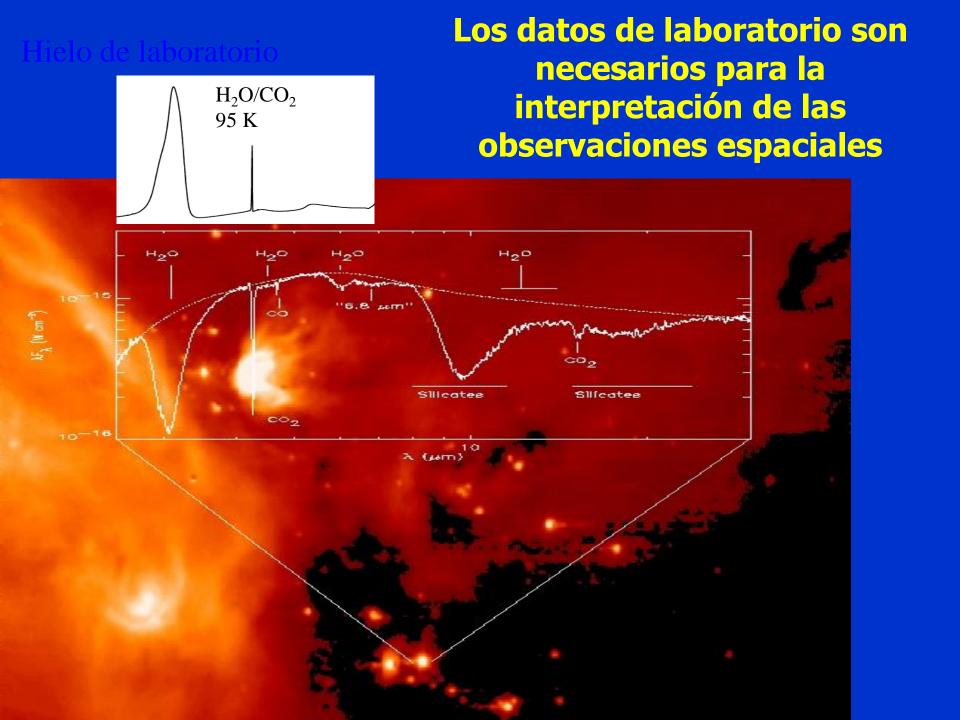

Nubes moleculares densas

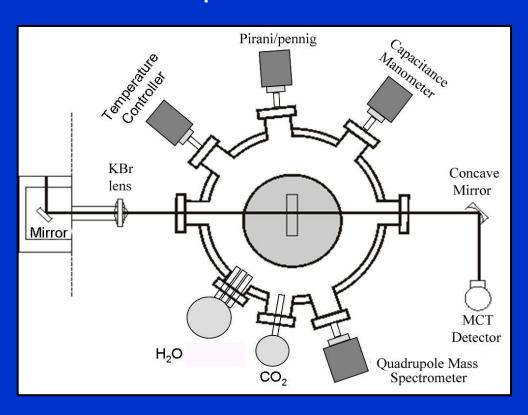
Imagen de luz visible

Barnard 68 . (FORS Team, 8.2-meter VLT Antu, ESO)

Técnicas de Investigación

Experimental

Simulación en el laboratorio de los distintos sistemas astrofísicos.

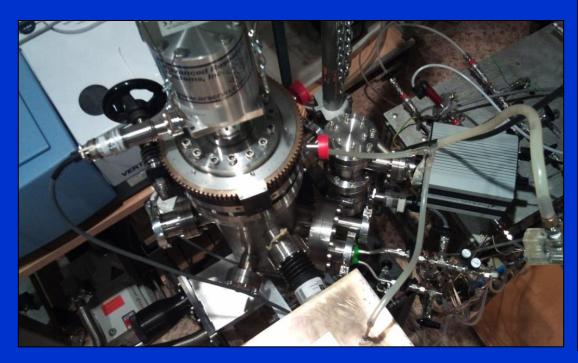

Diferentes programas *ab initio*: (SIESTA, CASTEP, GAUSSIAN, MOLPRO...)

Teórica

Sistema experimental

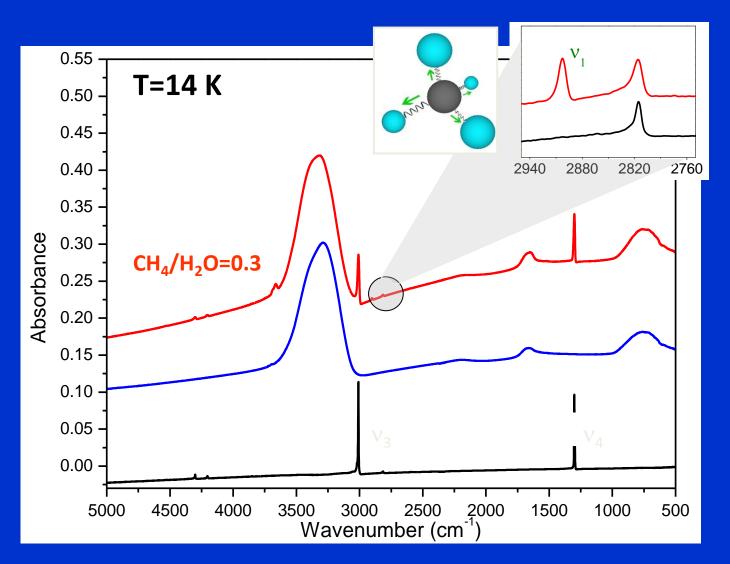
Cámaras de: alto vacío (10⁻⁸ mbar) y ultra alto vacío (10⁻¹⁰ mbar)

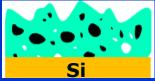
Temperatura controlada entre: 6 -300 K


CARACTERIZACIÓN:

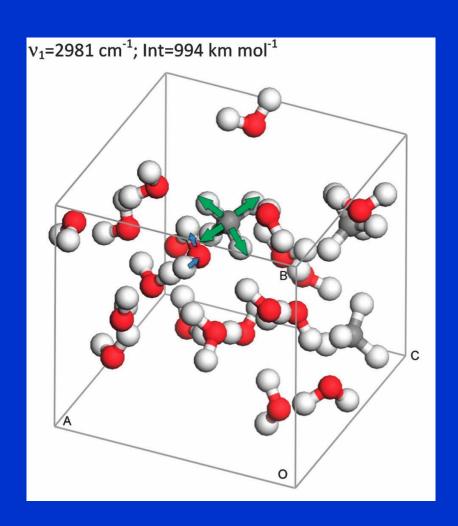
ESPECTROSCOPÍA
INFRARROJA
TRANSMISIÓN O
REFLEXIÓN-ABSORCIÓN

ESPECTROMETRÍA DE MASAS

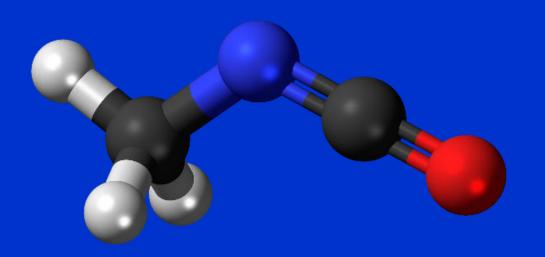

Sistema experimental


Simulación de entornos astrofísicos

Ejemplo: Hielo de metano y agua a 14 K



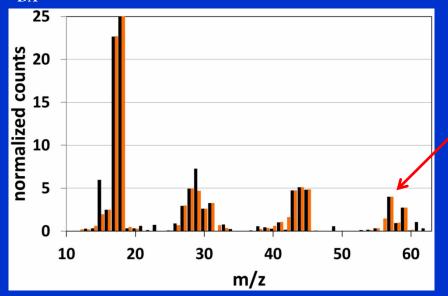
Cálculos CH₄/H₂O


Se ha usado Amorphous Cell y los modulos CASTEP del sofware Materials Studio. Hemos construido un modelo de hielo de agua amorfa, con densidad 0.7 g cm⁻³ . Las moléculas de metano se introdujeron en estas estructras amorfas buscando reproducir las estequeometrias con CH₄/H₂O entre 1/20 and 1/8. La geometría de las muestras se optimizó y se predijeron los espectros infrarrojos.

Se aplicó teoría del funcional de densidadd (DFT) con funcionales GGA-RPBE.

R. Escribano et al., PCCP, 16, 16694 (2014)

Ejemplo: Hielos de isocianato de metilo


Mision Rossetta al cometa 67P/Churyumov-Gerasimenko<u>"</u>

Lanzameinto: 2 Marzo 2004


Llegada al cometa: 6 Agosto 2014

Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/I DA

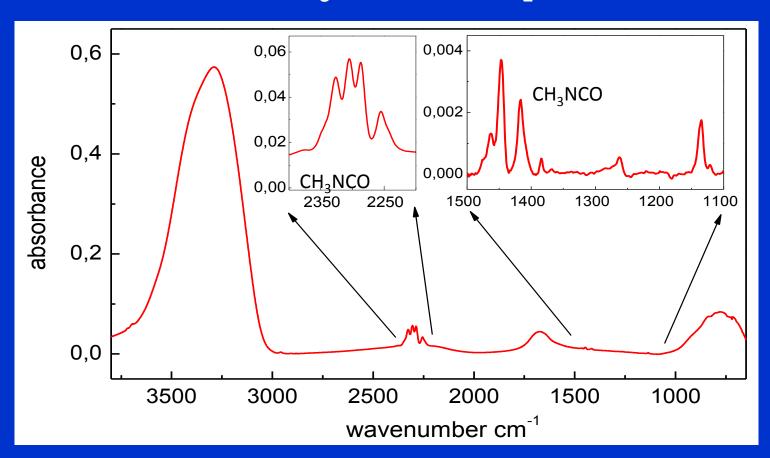
	Formula	Molar mass (u)	MS fraction	Relative to water
	H ₂ O	18	80.92	100
	CH ₄	16	0.70	0.5
	HCN	27	1.06	0.9
	со	28	1.09	1.2
	CH ₃ NH ₂	31	1.19	0.6
	CH ₃ CN	41	0.55	0.3
	HNCO	43	0.47	0.3
	CH₃CHO	44	1.01	0.5
	HCONH ₂	45	3.73	1.8
	C ₂ H ₅ NH ₂	45	0.72	0.3
	CH₃NCO	57	3.13	1.3
	CH₃COCH₃	58	1.02	0.3
	C ₂ H ₅ CHO	58	0.44	0.1
	CH ₃ CONH ₂	59	2.20	0.7
	CH₂OHCHO	60	0.98	0.4
	CH ₂ (OH)CH ₂ (OH)	62	0.79	0.2

CH₃NCO se ha detectado:

En la superficie del cometa 67P/Churimov-Gerasmenko.

F. Goesmann et al., Science, 2015

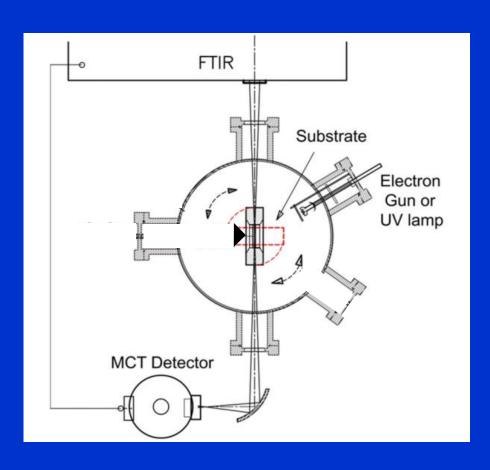
En fase gas en la nube densa hacia la protoestrella IRAS 16293-22422 B


R. Martín-Doménech et al., MNRAS, 2017

Puede estar presente en los mantos de hielo del Las nubes densas del medio interestelar???

Es necesario conocer las características espectrales en el IR del hielo de esta especie

Metil isocianato diluído en agua a 20 K H₃NCO (1.3%) /H₂O

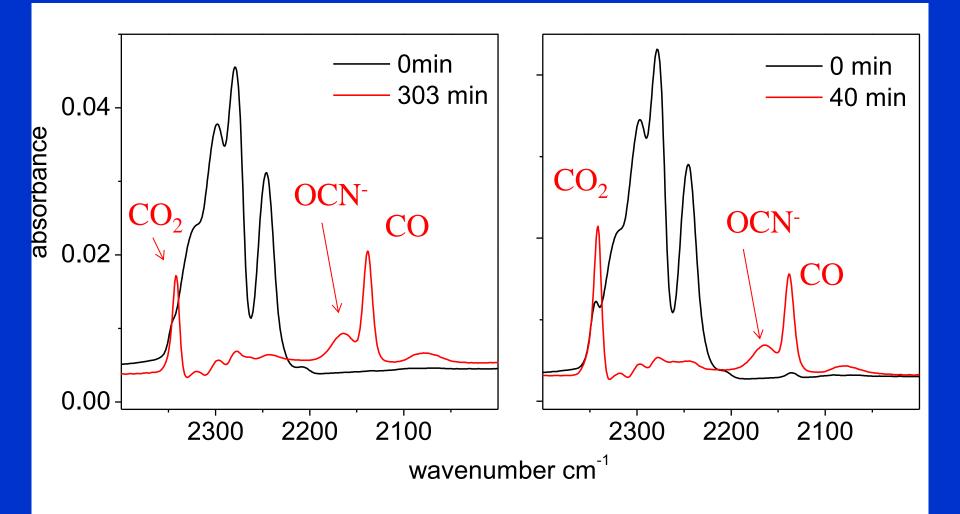

La misma proporcion de agua que en el cometa 67P/CG.

Posee una banda característiva claramente reconocible v_a-NCO

La molécula es un buen candidato para futuras búsquedas astronómicas Buscar una banda cuádruple entre 4.11-4.63 µm

Procesado energético con radiación UV o electrones de 5 keV

Simulamos el campo UV en el medio interestelar o Rayos cósmicos.



lámpara UV

cañón de electrones

Se forman CO₂, OCN-, y CO.

Vida media de CH₃NCO diluido en hielo de agua Estimada para diferentes entornos astrofísicos

Location of ices in space	Lifetime (yr)	UV ^a Dose rate (eV (16amu) molec ⁻¹ yr ⁻¹)	UV CH ₃ NCO half-life (yr)	CR ^a Dose rate (eV (16amu) molec ⁻¹ yr ⁻¹)	CR CH ₃ NCO half-life (yr)
Cold dense Cloud (15 K)	3 x 10 ⁷	4 x 10 ⁻⁷	2.8 x 10 ⁸	1.6 x 10 ⁻⁷	2.5 x 10 ⁷

^a from Moore, M. H., Hudson, R. L.,& Gerakines, P. A., Spectrochim. 2001, Acta A, 57, 843

Con las vidas medias obtenidas, CH₃NCO en los mantos de hielo de nubes densas sería destruido principalmente por rayos cósmicos, y llegaría a sobrevivir hasta el colapso graviatatorio de la nube.

Germán Molpeceres
Víctor Herrero
Rafael Escribano
Isabel Tanarro
Juan Ortigoso
Vicente Timón
Miguel Jimenez Redondo

http://www.iem.cfmac.csic.es/fismol/fmap/