Física Nuclear (1): Estudio de Núcleos Exóticos

M^a José García Borge Dpto de Espectroscopía 5 de abril del 2022

CSIC

Estructura Subatómica (> 99% de la materia)

Hadrones combinaciones de 2-3 quarks

qué mantiene unidos los protones y neutrones en el Núcleo

Fuerza Fuerte ("Fuerza nuclear") Corto Alcance (1 x10⁻¹⁵m) Int un nucleón con 10 Quarks, protones, neutrones...

•Fuerza Coulombiana (em) Largo alcance Mantiene el núcleo y electrones La sienten todas las particulas cargadas

Fuerza Débil

Nuclear

Responsable de la inestabilidad de ciertos núcleos

•Fuerza Gravitatoria

Su masa

Cuestiones Fundamentales en F. Nuclear?

¿Cómo resulta la complejidad del núcleo a partir de sus constituyentes?

Observables:

Prop del estado fundamental: masa, radio, momentos J, μ, Q Tiempo de duracion y proceso de desintegración Probabilidades de transicion ¿Cuáles son los límites de la estabilidad Nuclear?

¿Cómo y dónde en el universo se forman los elementos químicos?

Modelos teóricos:

Modelo de capas (números mágicos) Modelos de campo medio (deformación) Calculos basados en primeros principios (ligeros) M.J.G. Borge

NUPECC Long Range Plan 201 Perspectives in Nuclear Physics

2017

7

CSIC

Grupo de Física Nuclear

> Nucleones de Valencia esenciales
> El modelo de capas es la base para explicar la espectroscopia nuclear

El Modelo de capas y el carácter

Universal de los números magicos

Mayer &

Jensen (1949)

M.J.G. Borge

fijar los escenarios astrofísicos

<u>Aceleradores de Partículas: los microscopios de la F.N</u>

1932 Primera Reacción con protones: $p + {}^{7}Li {}^{4}He + {}^{4}He$

Li

Crockoft & Walton (PN 1951) Construyeron (1930) el primer acelerador para explorar el núcleo

Sincrotrón (1940)

Aceleradores de Partículas: los microscopios de la F.N.

LHC: 27 km de circunferencia 1232 imanes superconductores. Comenzó a operar en 2009 Descubrimiento del Higgs 2012

Grupo de Física Nuclear

11.30

Producción de isótopos artificiales

In-Flight Method (charla de Christophe Rappold)

CSIC

Grupo de Física Nuclear

Instalaciones de haces radiactivos

Deuterio

¿Por qué su radio de masa es tan grande?

10

A

= C

5

Desintegración beta de un núcleo exotico

CSIC

Grupo de Física

¿Núcleos Halo y Reacciones ?

Our objective is to determine the mixture coefficients of the 2⁺ isospin doublet

α-α coincidence spectrum + coincidence response matrix + fitting R-Matriarfgemalism Nuclear resonances in β-decay of broad resonances

reaction studies M. Lane et al., Rev. Mod. Phys. 30(2):257-353,

✓ Good fit to the experimental data

•La alimentación beta al doblete se ha resuelto por primera vez

F.C. Barker, Aus. Journ. Phys. 22(3):293-

316, 1969

•Se confirma que el doblete tiene una mezcla total de isopin.

•Limite a la emisión beta-p²⁰

CSIC Grupo de Física Nuclear

Estudio del nucleo N=Z ⁷²Kr

M.J.G. Borge

Carbon and Oxygeno:

- Se produce en el proceso de quemado de he en estrellas rojas gigantes.
- Su abundancia está determinada Their relative abundances are determined por la competición entre la destrución de 12C por 3α y la reacción ¹²C(α,γ)¹⁶O

La reacción ¹²C(α,γ)¹⁶O ocurre fundamentalmente a través de captura radiativa a dos estados de 16O muy proximos al umblal ¹²C + a

- La captura E1 capture con tribucion de los estados 1⁻ at 9.59 and sub-threshold 7.117 MeV (S_a = 7162 keV).
- La captura E2 dominada por por captura directa y al estado 2⁺ a 6.917 MeV.
- A pesar de la importancia d ela reaccion ¹²C(α,γ)¹⁶O, su seccion eficaz en las codiciones típicas de quedado de helio [E_{cm} ~ 300 keV] es muy limitado por varias razones
 - Su infima seccion eficaz, del orden de 10⁻¹⁷b.
 - Desconocimiento del papel que juegan los estads sub-umbrales a 7.117 y 6.917 MeV ¹⁶O.

Objetivo: medir las anchura-a de estos estados de una manera indirecta usando la reaccion ${}^{19}F(p,\alpha){}^{16}O$ en el CMAM (UAM)

04/19/2022

Aplicaciones en medicina: pCT

La proton terapia tiene la ventaja sobre la terapia convencional con radiación gamma que el daño de los órganos próximos se puede minimiza

Actualmente el control de dosis en tratamientos de proton terapia se usan XCT. En el procedimiento, coef de atenuación + Stopping powers (poder de frenado) de los distintos tejidos hay una incertidumbre de 3%

> Además en España ya exiten 2 instalaciones de terapia de protones: Quirón y Cl. U. de Navarra Y se planifican otras 12 mas (Fundación Amancio Ortega)

> > M.J.G. Borge

Dosis absorbida para -radiografía: 0.01 mGy -X-ray CT: 30-50 mGy -proton CT: ~1.3-1.4 mGy

Robert P. Johnson et al. Rep. Prog. Phys. 81 (2018) 016701 Experimento en Instalación Protonterapia CCb en Cracovia

Beam line Scat. target

CSIC

Grupo de Física Nuclear

• Propiedades de imágenes directas (radiografías) (**projectiones**)

•Tomografía de objetos 3D (Multiple projectiones) oTest de algoritmos de reconstruccion oEvaluacion de calidad de imágenes

3D Derenzo patterr

0-360° in 18° steps

20 projections x 20 mins/proj.

M.J.G. Borge

0-180° in 9° steps

20 projections x 20 mins/proj25

1) Antes del Experimento

- Interés físico y viabilidad \rightarrow Defensa ante un comité científico.
- Simulaciones Monte Carlo del experimento, detectores ...
- Preparación de detectores, electrónica, sistemas de adquisición ...
- 2) Durante el Experimento
 - Traslado de material al laboratorio correspondiente
 - Montaje experimental (1 semana... 4 meses... años...)
 - Medida con haz (1 semana)
- 3) Después del Experimento
 - Preparación de software y análisis (meses...)
 - Publicación de artículos y presentación en conferencias

• **1963 Barton & Bell** en McGill (Canada) identificaron ²⁵Si como el primer precursor de emisión de protones.

Emisión retardada de partículas

CSIC

Grupo de Física Nuclear

> •La energía de la particula depende de: 1-Intensidad beta del precursor 2-probabilidad de emision de part. Frente a gammas.

pesados, I_{p}^{if} se promedia

sobre el rango de energía

con forma de campana.

Cuestiones Fundamentales en F.

•¿Cómo se forma un núcleo a partir de sus contituyentes?

≻La interacción fuerte en el medio nuclear

• ¿Cómo explicar las propiedades colectivas a partir del comportamiento individual?

➢ Prop. colectivas versus individuales

 ¿Por qué aparecen regularidades en sistemas tan complejos?

Neutron Number

NuPECC Long Range Plan 201 Perspectives In Nuclear Physics

LRP 2010 Observables: LRP 2017 Prop del estado fundamental: masa, radi momentos J, μ, Q Tiempo de duracion y proceso de desintegració Probabilidades de transicion

Modelos teóricos:

Modelo de capas (números mágicos) Modelos de campo medio (deformación) Calculos basados en primeros principios (ligeros)

- •E,**G** ? -Dificil de medir
- •Spin-parity? - Reglas de selección
- •¿Estructura del estado? -Cluster states -Many-body states

Mecanismo de ruptura?
-¿Secuencial or directo?
-Importancia de los distintos canales

•Relación con estructura del estado •Espectro
•Asimptótico
•Observables

-Energías Correlaciones angulares