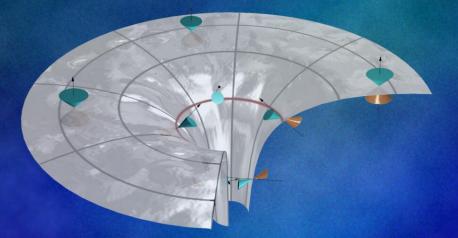

agujeros negros

luis j. garay

 1 Universidad Complutense de Madrid

²Instituto de Estructura de la Materia, CSIC



Resumen

- Agujeros negros
 - Ecuaciones de Einstein
 - Formación de un agujero negro estelar
 - Estructura de un agujero negro
 - Cómo y dónde encontrarlos
- Termodinámica de agujeros negros
 - Leyes de la termodinámica
 - Dinámica de agujeros negros
 - Radiación de Hawking
 - Evaporación de agujeros negros
- Agujeros negros acústicos
 - Agujeros negros acústicos en fluidos
 - Agujeros negros acústicos en CBEs
 - Experimentos
 - Trabajos actuales

agujeros negros

- El espaciotiempo determina el movimiento de la energía.
- La energía curva el espaciotiempo.

luis j. garay (UCM-CSIC) Agujeros negros Madrid, 18 noviembre 2008

- El espaciotiempo determina el movimiento de la energía.
- La energía curva el espaciotiempo.

Ecuaciones de Einstein:

$$G_{\mu\nu} = \frac{8\pi G}{c^3} T_{\mu\nu}$$

$$densidad = 0$$

$$\Rightarrow$$

 $densidad = 0 \implies curvatura (Weyl) = 0$

Fuerzas de marea

luis j. garay (UCM-CSIC) Aqujeros negros Madrid, 18 noviembre 2008

- Contracción de una nube de gas:

 - Se encienden las reacciones nucleares.
 - Equilibrio: presión \iff fuerza gravitatoria.
 - Formación de una estrella.

- Contracción de una nube de gas:

 - Se encienden las reacciones nucleares.
 - Equilibrio: presión ←⇒ fuerza gravitatoria.
 - Formación de una estrella.

• El combustible nuclear se agota (primero H, después He). No se puede mantener la presión: la estrella se contrae. El estado final del colapso depende de la masa de la estrella.

Estado final del colapso

- Enana blanca $(M \lesssim 1.4 M_{\odot})$:
 - lonización
 - Presión electrónica (principio de exclusión de Pauli)

luis j. garay (UCM-CSIC) Agujeros negros Madrid, 18 noviembre 2008

- Enana blanca $(M \lesssim 1.4 M_{\odot})$:
 - lonización
 - Presión electrónica (principio de exclusión de Pauli)
- Estrella de neutrones $(M \lesssim 3M_{\odot})$:
 - $e^- + p^+ \rightarrow n + v$
 - Presión neutrónica (principio de Pauli)
 - Muy densa y pequeña

Estado final del colapso

- Enana blanca $(M \lesssim 1.4 M_{\odot})$:
 - lonización
 - Presión electrónica (principio de exclusión de Pauli)
- Estrella de neutrones $(M \lesssim 3M_{\odot})$:
 - $e^- + p^+ \rightarrow n + v$
 - Presión neutrónica (principio de Pauli)
 - Muy densa y pequeña
- Agujero negro $(M \gtrsim 3M_{\odot})$:
 - La presión neutrónica no puede compensar la gravedad
 - La estrella colapsa

Los agujeros negros no tienen pelo (aún menos que yo)

Agujeros negros Termodinámica ANs acústicos Ecs.Einstein Formación Estructura Detección

Estructura de un agujero negro (i)

[Agujeros negros]

Horizonte de sucesos

- Superficie en la que la gravedad es tan fuerte que ni siquiera la luz puede escapar.
- Es el conjunto de trayectorias espaciotemporales de los rayos de luz que no pueden escapar y que se mueven eternamente en ese límite.

El radio del horizonte es proporcional a la masa del agujero negro.

Ecs. Einstein Formación Estructura Detección

Estructura de un aqujero negro (i)

[Agujeros negros]

Horizonte de sucesos

- Superficie en la que la gravedad es tan fuerte que ni siquiera la luz puede escapar.
- Es el conjunto de trayectorias espaciotemporales de los rayos de luz que no pueden escapar y que se mueven eternamente en ese límite.

El radio del horizonte es proporcional a la masa del agujero negro.

Singularidad

En el centro del agujero negro, la densidad es infinita.

Ecs. de Einstein:

curvatura infinita \implies ruptura del espaciotiempo.

Agujeros negros Termodinámica ANs acústicos Ecs. Einstein Formación Estructura Detección

Estructura de un aqujero negro (i)

[Agujeros negros]

Horizonte de sucesos

- Superficie en la que la gravedad es tan fuerte que ni siguiera la luz puede escapar.
- Es el conjunto de trayectorias espaciotemporales de los rayos de luz que no pueden escapar y que se mueven eternamente en ese límite.

El radio del horizonte es proporcional a la masa del agujero negro.

Singularidad

En el centro del agujero negro, la densidad es infinita. *Ecs. de Einstein:*

curvatura infinita \implies ruptura del espaciotiempo.

• Conjetura de censura cósmica

Las singularidades siempre están ocultas detrás de horizontes de sucesos que no permiten que *afecten al futuro* del exterior.

Estructura de un agujero negro (ii)

- (ii) [Agujeros negros]
- \bullet Supongamos que tenemos una masa M concentrada en una región muy pequeña del espacio (puntual).
- Existe un radio a partir del cual la gravedad es tan fuerte que ni siquiera la luz puede escapar: es el horizonte de sucesos.

$$\frac{1}{2}mv^2 - \frac{GMm}{r} = E_{\infty} \ge 0$$

$$r \ge \frac{2GM}{r^2} \ge \frac{2GM}{r^2} \equiv R_{\rm S}$$

¡OJO! Hace falta relatividad general.

Newton y $c < \infty$ son incompatibles.

$$\circ$$
 R_s : Radio de Schwarzschild

Sol:
$$R_s = 3 \text{ km}$$

Tierra: $R_s = 9 \text{ mm}$

luis j. garay (UCM-CSIC)

Viaje a un agujero negro

- Una nave viaja en caída libre hacia un agujero negro.
- Dos posibles observadores:
- nave en caída libre
 - laboratorio fijo alejado

- Una nave viaja en caída libre hacia un agujero negro.
- - ♦ laboratorio fijo alejado

- Según el laboratorio:
 - La nave disminuye su velocidad y necesita un tiempo infinito para llegar al horizonte.
 - La nave enrojece y dejan de verla.

- Una nave viaja en caída libre hacia un agujero negro.
- Dos posibles observadores:
 nave en caída libre
 laboratorio fijo alejado
- Según el laboratorio:
 - La nave disminuye su velocidad y necesita un tiempo infinito para llegar al horizonte.
 - La nave enrojece y dejan de verla.
- En la nave:
 - La nave cruza el horizonte sin problemas.
 - Sufren fuerzas de marea cada vez mayores: $\Delta g \simeq 2GM \frac{t}{r^3}$. Cerca de la singularidad, Δg es muy grande.

Fuerzas de marea

$$(r \simeq R_s = 2GM/c^2)$$

$$\Delta g_h \simeq 2GM \, rac{l}{R_s^3} = rac{c^6}{4G^2} \, rac{l}{M^2}$$

- ullet Agujeros grandes \Rightarrow Δg_h pequeño
- Agujeros pequeños \Rightarrow Δg_h grande

Fuerzas de marea

$$(r \simeq R_s = 2GM/c^2)$$

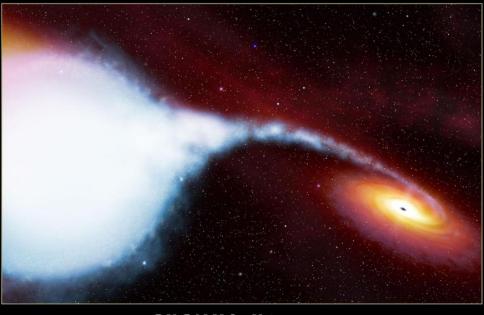
$$\Delta g_h \simeq 2GM \, rac{l}{R_s^3} = rac{c^6}{4G^2} \, rac{l}{M^2}$$

- Agujeros grandes \Rightarrow Δg_h pequeño
- Aqujeros pequeños \Rightarrow Δg_h grande

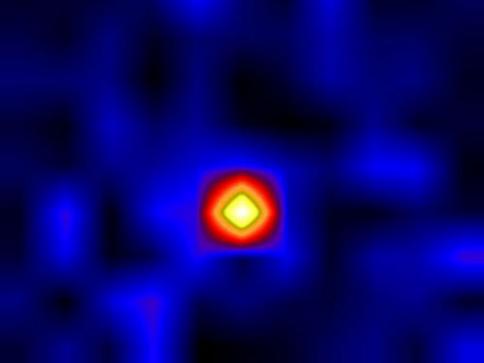
En cualquier caso, cerca de la singularidad, $\Delta g \rightarrow \infty$.

... bastante desagradable.

Además, la singularidad es inevitable (en tiempo finito).

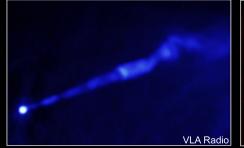


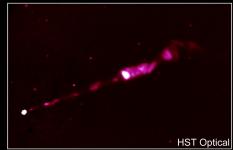
Cómo observarlos

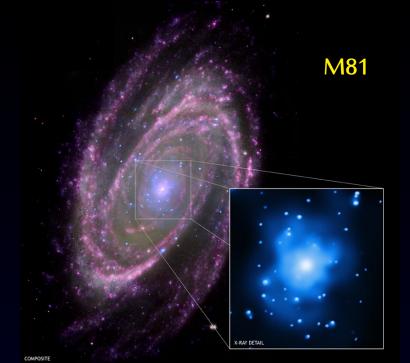

- Emisión característica de radiación emitida por la materia que cae en el agujero negro.
- Movimiento de la materia cercana:
 - Radio y velocidad de la materia \longrightarrow masa del objeto \neg radio del horizonte $\not\leftarrow$
 - Si el tamaño del objeto parece menor o igual que el radio del horizonte, todo el objeto está dentro del horizonte y es un agujero negro.
- Dónde encontrarlos ...

Whereas Stephen Hawking has such a large investment in General Relativity and Black Holes and desires an insurance policy, and whereas Kip Thorns lekes to live dangerously without an insurance policy, ഗ Therefore be it resolved that Stephen Hawking Bets I year's subscription to "Penthouse" as against Kip Thorne's wager of a 4-year Subscription to "Private Eye", that Cygnus XI does not contain a black hole of mass above the 5 Chandrasekkan limit. late harmy Kips. Thomas Witnessed this trents Afrandran Anna Zyther Werner I

CYGNUS-X1 Black hole




Galaxia del sombrero


M87

Sagitario A* (Vía Láctea)

SGR A*

XXXXXXXXX

Relaciones entre •

- ♦ *T* Temperatura,
- ◆ E Energía,
- ♦ S Entropía (desorden).

LEY o. En equilibrio, T es constante.

LEY 1. dE = T dS.

Ley 2. $dS \ge 0$. La entropía siempre crece.

LEY 3. No se puede alcanzar T=0.

XXXXXXXXXX

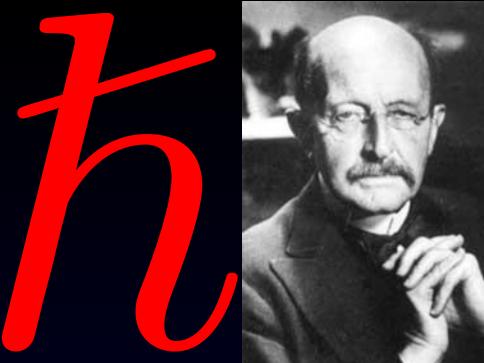
De las ecs. de Einstein se deducen los siguientes resultados:

• El área $A = 4\pi R_s^2$ nunca puede decrecer.

- (LEY 2)
- Gravedad en el horizonte: $g_h = \frac{GM}{R_c^2} = \mathrm{const}_h \neq 0$. (Leyes o, 3)
- Relación entre dM, dA y g_h : $dM = \frac{1}{8\pi G}g_h dA$. (LEY 1)

Dinámica de aquieros negros

[Termodinámica de aqujeros negros]


De las ecs. de Einstein se deducen los siguientes resultados:

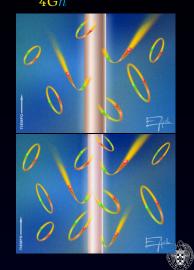
- El área $A = 4\pi R_S^2$ nunca puede decrecer. (LEY 2)
- Gravedad en el horizonte: $g_h = \frac{GM}{R_c^2} = \text{const}_h \neq 0$. (Leyes o, 3)
- Relación entre dM, dA y g_h : $dM = \frac{1}{8\pi G}g_h dA$. (LEY 1)

¿Podemos asignar
$$M \longrightarrow E \checkmark$$
, $g_h \longrightarrow T$, $A \longrightarrow S$?

- No es posible utilizando solo la teoría clásica, es decir, utilizando solo las constantes universales G, c y $k_{\rm B}$.
- Dos problemas:
 - Dimensiones.
 - Si el agujero negro tiene temperatura, debe radiar.

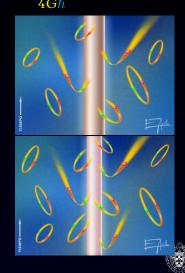
Radiación de Hawking

[Termodinámica de aqujeros negros]

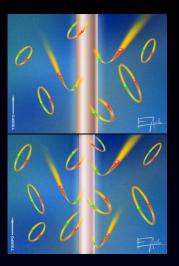

• Dimensiones:
$$T=rac{\hbar}{2\pi k_{
m B}c}g_{h}, \qquad S=rac{k_{
m B}c^3}{4G\hbar}A.$$

Dimensiones:

$$T=\frac{\hbar}{2\pi k_{\rm B}c}g_{\rm h},$$


- El vacío cuántico es una *sopa* de fluctuaciones: partículas virtuales.
- Cerca del horizonte, las partículas virtuales absorben energía del campo gravitatorio y se convierten en reales. Algunas escapan del agujero.

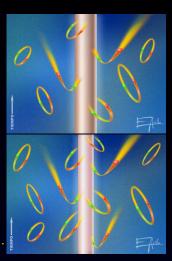
- $T = \frac{\hbar}{2\pi k_{\rm B} c} g_{\rm h},$ • Dimensiones:
- El vacío cuántico es una sopa de fluctuaciones: partículas virtuales.
- Cerca del horizonte, las partículas virtuales absorben energía del campo gravitatorio y se convierten en reales. Algunas escapan del aqujero.
- Desde muy lejos, esta emisión de partículas corresponde a la de un cuerpo negro con una temperatura


$$T=\frac{\hbar g_h}{2\pi k_{\rm B}c}\propto\frac{1}{M}.$$

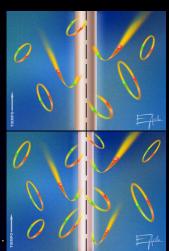
• Ejemplo egregio de la teoría cuántica de campos en espaciotiempos curvos.

Evaporación de aqujeros negros

- El agujero negro pierde energía. Se evapora.
- A medida que disminuye la masa, aumenta la temperatura y, por tanto, la radiación.
- No puede emitir toda la información. ¿Dónde está?



[Termodinámica de aqujeros negros]

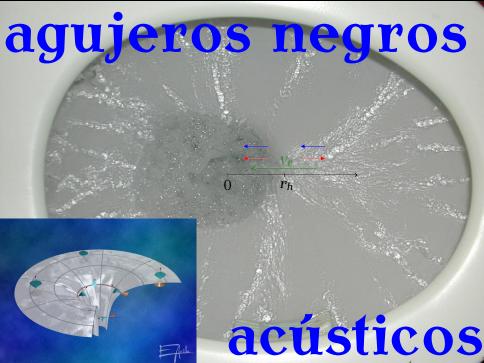

Evaporación de agujeros negros

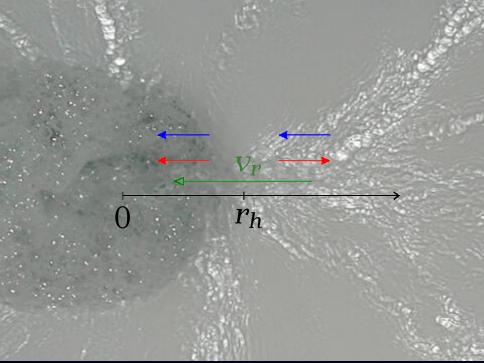
- El agujero negro pierde energía.
 Se evapora.
- A medida que disminuye la masa, aumenta la temperatura y, por tanto, la radiación.
- No puede emitir toda la información. ¿Dónde está?
- Etapas finales de la evaporación:
 - desaparece la singularidad;
 - remanente planckiano;
 - agujero de gusano;
 - mar de agujeros negros virtuales..

- El agujero negro pierde energía.
 Se evapora.
- A medida que disminuye la masa, aumenta la temperatura y, por tanto, la radiación.
- No puede emitir toda la información. ¿Dónde está?
- Etapas finales de la evaporación:
 - desaparece la singularidad;
 - remanente planckiano;
 - agujero de gusano;
 - mar de agujeros negros virtuales..
- Por otro lado, con o sin evaporación, ¿qué pasa en la singularidad?

Aquieros negros **Termodinámica** ANs acústicos Termo Dinámica-ANs Hawking **Evaporación**

cuantica


luis j. garay (UCM-CSIC)


Agujeros negros

Madrid, 18 noviembre 2008

Agujeros negros acústicos en la naturaleza

- viento solar
- acrecimiento de Bondi-Hoyle
- túneles de viento supersónicos

luis j. garay (UCM-CSIC)

Agujeros negros acústicos en la naturaleza

- viento solar
- acrecimiento de Bondi-Hoyle
- túneles de viento supersónicos

no son útiles para nuestros propósitos

Agujeros negros acústicos en fluidos

(i) [Agujeros negros acústicos]

Agujeros negros acústicos en la naturaleza

- viento solar
- acrecimiento de Bondi-Hoyle
- túneles de viento supersónicos

no son útiles para nuestros propósitos

- o condensados de Bose-Einstein:
 - sin viscosidad
 - con efectos cuánticos
 - relativamente simples.
 - deterioro cuántico en los CBEs < 1% son sistemas muy limpios

Aqujeros negros Termodinámica ANs acústicos ANs-fluidos ANs-CBE Experimentos Actual

Agujeros negros acústicos en fluidos

(ii) [Agujeros negros acústicos]

- La analogía entre agujeros negros gravitatorios y acústicos solo es válida para aspectos cinemáticos, no dinámicos, es decir, para los que no hagan falta las ecuaciones de Einstein
- No existe colapso acústico, en comparación con el colapso gravitatorio
- Los agujeros negros acústicos son fruto de la ingeniería, no de la dinámica

...al menos de momento

- Existen soluciones de tipo agujero negro, en los regímenes adecuados
- La existencia de soluciones no es suficiente. Además, han de ser estables √

luis j. garay (UCM-CSIC) Agujeros negros Madrid, 18 noviembre 2008

- Existen soluciones de tipo agujero negro, en los regímenes adecuados
- La existencia de soluciones no es suficiente. Además, han de ser estables √
- La radiación de Hawking acústica es pequeña pero, aún así, mejora las perspectivas de detección
 - Agujero negro solar: $T_{
 m H}\sim 60~{
 m nK}$, $T_{
 m frc}\sim 3~{
 m K}$
 - Agua: $T_{\rm H} \sim 1~\mu{\rm K}$, $T_{\rm agua} \sim 300~{\rm K}$
 - CBE: $T_{\rm H} \sim 30 \text{ nK}$, $T_{\rm CBE} \sim 100 \text{ nK}$

- Existen soluciones de tipo agujero negro, en los regímenes adecuados
- La existencia de soluciones no es suficiente. Además, han de ser estables √
- La radiación de Hawking acústica es pequeña pero, aún así, mejora las perspectivas de detección
 - Agujero negro solar: $T_{
 m H} \sim 60~{
 m nK}, T_{
 m frc} \sim 3~{
 m K}$
 - Agua: $T_{\rm H} \sim 1~\mu{\rm K}$, $T_{\rm agua} \sim 300~{\rm K}$
 - CBE: $T_{\rm H} \sim 30 \text{ nK}$, $T_{\rm CBE} \sim 100 \text{ nK}$
- Existen otros procesos radiativos (cuánticos) interesantes:

modos de relajación — ondas gravitatorias

 Las perturbaciones de longitud de onda corta ven los átomos, es decir, requieren la teoría completa

luis j. garay (UCM-CSIC) Agujeros negros Madrid, 18 noviembre 2008

- Las perturbaciones de longitud de onda corta ven los átomos, es decir, requieren la teoría completa
- Las perturbaciones de longitud de onda larga no ven los átomos, sino un potencial efectivo. Se comportan como un campo relativista en un espaciotiempo curvo efectivo.

luis j. garay (UCM-CSIC)

ANs-fluidos ANs-CBE Experimentos Actual

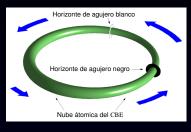
Agujeros negros acústicos en CBEs

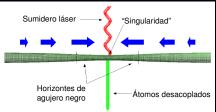
- Las perturbaciones de longitud de onda corta ven los átomos, es decir, requieren la teoría completa
- Las perturbaciones de longitud de onda larga no ven los átomos, sino un potencial efectivo. Se comportan como un campo relativista en un espaciotiempo curvo efectivo.
- En gravedad, tenemos situación similar, pero no conocemos la teoría global, para todas las longitudes de onda.
 - Objetivo: aprender de otros sistemas.

ANs-fluidos ANs-CBE Experimentos Actual

- Las perturbaciones de longitud de onda corta ven los átomos, es decir, requieren la teoría completa
- Las perturbaciones de longitud de onda larga no ven los átomos, sino un potencial efectivo. Se comportan como un campo relativista en un espaciotiempo curvo efectivo.
- En gravedad, tenemos situación similar, pero no conocemos la teoría global, para todas las longitudes de onda.
 - Objetivo: aprender de otros sistemas.
- Modificaciones a la propagación relativista:
 - Disuelven el horizonte

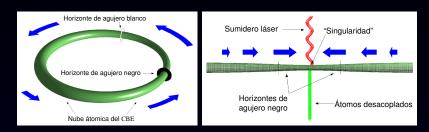
Experimentos


- Posibilidad de realización experimental
 - Anillo. Sin dificultades aparentes



Experimentos

- Posibilidad de realización experimental
 - Anillo. Sin dificultades aparentes
 - Sumidero. Experimentalmente más complicado. Hace falta un condensado muy grande o la posibilidad de alimentarlo continuamente



Experimentos

- Posibilidad de realización experimental
 - Anillo. Sin dificultades aparentes
 - Sumidero. Experimentalmente más complicado. Hace falta un condensado muy grande o la posibilidad de alimentarlo continuamente

Otros sistemas: helio...

Modos cuasinormales (i)

Los agujeros negros perturbados emiten radiación gravitatoria

- Régimen inicial: depende de la forma concreta de la perturbación
- Oscilación amortiquada (MQNs): depende solo del agujero negro
- Cola polinómica

Modos cuasinormales (i)

Los agujeros negros perturbados emiten radiación gravitatoria

- Régimen inicial: depende de la forma concreta de la perturbación
- Oscilación amortiquada (MQNs): depende solo del aqujero negro
- Cola polinómica

- Relajación "modos de timbre"
- Espectro discreto
- relajación lenta: $\tau \sim R_{\rm S}/c \gg t_{\rm P}$

luis j. garay (UCM-CSIC)

Condiciones de contorno

- El horizonte es permeable
- Algunos modos tienen velocidad supersónica y pueden salir

ANs-fluidos ANs-CBE Experimentos Actual

Modos cuasinormales (ii)

Condiciones de contorno

- El horizonte es permeable
- Algunos modos tienen velocidad supersónica y pueden salir

Resultado

- Espectro continuo
- Tiempo de relajación muy corto (análogo a $t_{\rm P}$)

Extrapolación/especulación para aquieros negros gravitatorios

 El espectro de aqujeros negros también contiene un sector continuo de modos cuasinormales de vida muy corta: se deberían a efectos cuánticos en el horizonte que modificarían las leyes de propagación (?)

Agujeros negros gravitatorios

- La radiación de Hawking depende de la física de muy alta energía cerca del horizonte
- Las leyes de la gravedad podrían verse modificadas por efectos cuánticos

Agujeros negros Termodinámica ANs acústicos ANs-fluidos ANs-CBE Experimentos Actual

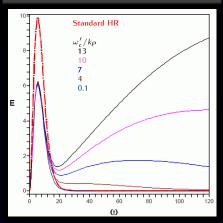
Modificación de la radiación de Hawking (i)

[Agujeros negros acústicos, actual]

Agujeros negros gravitatorios

- La radiación de Hawking depende de la física de muy alta energía cerca del horizonte
- Las leyes de la gravedad podrían verse modificadas por efectos cuánticos

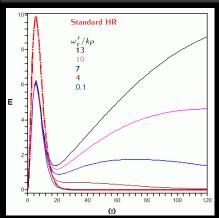
Agujeros negros acústicos en CBEs


- Incorporan modificaciones cuánticas
- El horizonte es difuso y permeable
- La naturaleza de la radiación de Hawking depende de estas modificaciones (superluminales)
 - en su forma
 - en su duración

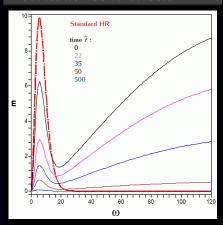
Agujeros negros Termodinámica ANs acústicos ANs-fluidos ANs-CBE Experimentos Actual

Modificación de la radiación de Hawking (ii) [Agujeros negros acústicos, actual]

Modificación de la forma



Agujeros negros Termodinámica ANs acústicos ANs-fluidos ANs-CBE Experimentos Actual


Modificación de la radiación de Hawking (ii)

[Aqujeros negros acústicos, actual]

Modificación de la duración

Aqujeros negros Termodinámica ANs acústicos ANs-fluidos ANs-CBE Experimentos Actual

Resumen

- Agujeros negros
 - Ecuaciones de Einstein
 - Formación de un agujero negro estelar
 - Estructura de un agujero negro
 - Cómo y dónde encontrarlos
- Termodinámica de agujeros negros
 - Leyes de la termodinámica
 - Dinámica de agujeros negros
 - Radiación de Hawking
 - Evaporación de agujeros negros
- Agujeros negros acústicos
 - Agujeros negros acústicos en fluidos
 - Agujeros negros acústicos en CBEs
 - Experimentos
 - Trabajos actuales

42/42